Cellular mechanisms involved in CO(2) and acid signaling in chemosensitive neurons.
نویسندگان
چکیده
An increase in CO(2)/H(+) is a major stimulus for increased ventilation and is sensed by specialized brain stem neurons called central chemosensitive neurons. These neurons appear to be spread among numerous brain stem regions, and neurons from different regions have different levels of chemosensitivity. Early studies implicated changes of pH as playing a role in chemosensitive signaling, most likely by inhibiting a K(+) channel, depolarizing chemosensitive neurons, and thereby increasing their firing rate. Considerable progress has been made over the past decade in understanding the cellular mechanisms of chemosensitive signaling using reduced preparations. Recent evidence has pointed to an important role of changes of intracellular pH in the response of central chemosensitive neurons to increased CO(2)/H(+) levels. The signaling mechanisms for chemosensitivity may also involve changes of extracellular pH, intracellular Ca(2+), gap junctions, oxidative stress, glial cells, bicarbonate, CO(2), and neurotransmitters. The normal target for these signals is generally believed to be a K(+) channel, although it is likely that many K(+) channels as well as Ca(2+) channels are involved as targets of chemosensitive signals. The results of studies of cellular signaling in central chemosensitive neurons are compared with results in other CO(2)- and/or H(+)-sensitive cells, including peripheral chemoreceptors (carotid body glomus cells), invertebrate central chemoreceptors, avian intrapulmonary chemoreceptors, acid-sensitive taste receptor cells on the tongue, and pain-sensitive nociceptors. A multiple factors model is proposed for central chemosensitive neurons in which multiple signals that affect multiple ion channel targets result in the final neuronal response to changes in CO(2)/H(+).
منابع مشابه
HIGHLIGHTED TOPIC Central CO2 Chemoreception in Cardiorespiratory Control CO2 chemoreception in cardiorespiratory control
Putnam RW. CO2 chemoreception in cardiorespiratory control. J Appl Physiol 108: 1796–1802, 2010. First published January 21, 2010; doi:10.1152/japplphysiol.01169.2009.—Considerable progress has been made elucidating the cellular signals and ion channel targets involved in the response to increased CO2/H of brain stem neurons from chemosensitive regions. Intracellular pH (pHi) does not exhibit r...
متن کاملMultiple targets of chemosensitive signaling in locus coeruleus neurons: role of K+ and Ca2+ channels.
We studied chemosensitive signaling in locus coeruleus (LC) neurons using both perforated and whole cell patch techniques. Upon inhibition of fast Na(+) spikes by tetrodotoxin (TTX), hypercapnic acidosis [HA; 15% CO(2), extracellular pH (pH(o)) 6.8] induced small, slow spikes. These spikes were inhibited by Co(2+) or nifedipine and were attributed to activation of L-type Ca(2+) channels by HA. ...
متن کاملMechanisms of spinal cord injury regeneration in zebrafish: a systematic review
Objective(s):To determine the molecular and cellular mechanisms of spinal cord regeneration in zebrafish. Materials and Methods: Medical databases of PubMed and Scopus were searched with following key words: Zebrafish; spinal cord injuries; regeneration; recovery of function. The map of mechanisms was performed using Xmind software. Results: Wnt/ß-catenin signaling, L1.1, L1.2, Major vault prot...
متن کاملP26: Long-Term Potentiation: The Mechanisms of CaMKII in Lerarning and Memory
Long-term potentiation (LTP) is a form of activity dependent plasticity that induced by high-frequency stimulation or theta burst stimulation and results in synaptic transmission. Several Studies have been shown that LTP is one of the most important processes in the CNS that plays an important role in learning and memory formation. Ca2+/calmodulin-dependent protein kinase II (CaMKII) is a major...
متن کاملHIGHLIGHTED TOPIC Central CO2 Chemoreception in Cardiorespiratory Control Hypercapnia causes cellular oxidation and nitrosation in addition to acidosis: implications for CO2 chemoreceptor function and dysfunction
Dean JB. Hypercapnia causes cellular oxidation and nitrosation in addition to acidosis: implications for CO2 chemoreceptor function and dysfunction. J Appl Physiol 108: 1786– 1795, 2010. First published February 11, 2010; doi:10.1152/japplphysiol.01337.2009.— Cellular mechanisms of CO2 chemoreception are discussed and debated in terms of the stimuli produced during hypercapnic acidosis and thei...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- American journal of physiology. Cell physiology
دوره 287 6 شماره
صفحات -
تاریخ انتشار 2004